CME Accelerations in the Low Corona

O. C. St. Cyr NASA-GSFC J. T. Burkepile HAO/NCAR

08-July-2007 Separation=17.4°

CME Accelerations: So What? Who Cares?

- To understand the magnitude of the forces acting on CMEs as they propagate through the corona
 - •Escape speed from the photosphere is ~600 km/s, whereas the average CME speed is <500 km/s(!)
- •To understand the relationship between CMEs and other forms of solar activity. [Accurate CME Start Times!]
 - •How are flares and CME's related? Both involve the eruption of a magnetic neutral line (but the spatial and temporal scales are different!)
- Study CME motions over a wide range of coronal and interplanetary scale heights

Observations of CME Accelerations

•Not discussed here:

- •X-ray: Yohkoh, Hinode, GOES SXI, RHESSI
- •EUV/UV: SOHO UVCS et al.
- Visible Spectroscopy: SOHO LASCO C1
- White-light Thomson-scattered corona:
 - Skylab, P-78 Solwind, SMM C/P, Spartan
 - •STEREO CORs [Future!]
- Wide field white-light imaging: SMEI and STEREO HI
- •Results presented here come from observations of the white-light Thomson-scattered corona:
 - MLSO MK3 and MK4 [low corona]
 - SOHO LASCO C2 and C3 [outer corona]

Measuring CME Speeds and Accelerations

SOHO LASCO 02-June-1998

Courtesy S. Yashiro (http://cdaw.gsfc.nasa.gov)

Constant Speed or Acceleration?

Courtesy S. Yashiro (http://cdaw.gsfc.nasa.gov)

Constant Speed!

Courtesy S. Yashiro (http://cdaw.gsfc.nasa.gov)

Measurements of CME Accelerations

- SMM C/P and SOHO LASCO
 - •~80% can be fit by a linear function (constant speed)

- MLSO MK3 and MK4
 - •~50% require a second order fit to h-t measurements

Low Corona (<2.5 R_s)

Outer Corona (2-32 R_s)

CStCyr—SHINE – July 2007--#8

Decelerating Accelerating

Figure 8. Acceleration distribution of the CMEs for various speed ranges. The fractions in 5 m s⁻² interval are obtained by dividing the number of CMEs in each bin by the total number of CMEs.

3,058 LASCO CMEs Yashiro et al., 2003

Conclusions

- Measurements of the inital phase of CME acceleration are important for understanding their origin and propagation
- •CME acceleration greatest in low corona (Consistent with St.Cyr et al. 1999, J. Zhang et al. 2001)
- New observations from STEREO COR1 and MLSO MK4 will enable us to measure initial accelerations of CMEs
- New observations from SMEI and STEREO HI will allow us to measure CME deceleration far away from the Sun

http://cor1.gsfc.nasa.gov

- HOME
- OBSERVERS LOG & CME CATALOG
- INSTRUMENT DESIGN
- PRESENTATIONS & PUBLICATIONS
- RELATED LINKS
- SCIENCE TEAM
- DATA DOWNLOAD
- DAILY BROWSE MOVIES
- MOVIE GALLERY
- IMAGE GALLERY
- COR1 USERS GUIDE

WHAT'S NEW

PICTURE OF THE MOMENT

A STEREO EUVI and COR1 image overlay

These are available via the solar weather browser tool, downloadable from the Royal Observatory of Belgium in Brussels at: http://sidc.oma.be/SWB/

>> View

FEATURED MOVIE

A large CME off the northeast limb

A large CME off the northeast limb of the Sun detected on May 15, 2007, by both COR1-A and -B.

>> View

NASA Official: O. C. St. Cyr Webmaster: Kevin Addison

Privacy Policy and Important Notices Last Revised: Last Updated: July 26, 2007 15:14:49

